<br /> <b>Warning</b>: Missing argument 2 for issart_title(), called in /var/www/blog.issart.ru/wp-includes/class-wp-hook.php on line 288 and defined in <b>/var/www/blog.issart.ru/wp-content/themes/seashell/functions.php</b> on line <b>289</b><br /> <br /> <b>Warning</b>: Missing argument 3 for issart_title(), called in /var/www/blog.issart.ru/wp-includes/class-wp-hook.php on line 288 and defined in <b>/var/www/blog.issart.ru/wp-content/themes/seashell/functions.php</b> on line <b>289</b><br /> deep learning Archives - ISS Art Blog | AI | Machine Learning | Computer Vision

Tag - deep learning

Concrete crack detection using Deep Learning and Computer Vision

Introduction

Cracks on the surface are a major defect in concrete structures. Early crack detection allows preventing possible damage. There are various approaches to solving this problem. It can be manual inspection or automatic detection methods. But nowadays automatic detection methods include not only laser testing and radiographic testing. Progress in neural networks and computer vision allows us to use image processing for concrete surface crack detection. 

In this article, we will share our approach to solving the problem mentioned above.

Read More

Classification of image style using deep learning with Python

In this article, I want to talk about the use of convolutional neural networks for the classification of images by style.

The goal of our project is to build software to identify whether an image is in the “BMW style”. In other words, we are faced with the task of classifying images. It is important to note here that images could be of any content, with and without cars. So, the main interest here is not to identify a car object, or identify a BMW car, rather identify a BMW look and feel – colors, composition and so on. But we can’t select these attributes of style manually. To solve this problem, it was proposed to use a neural network, in which such complex features will be found automatically in the learning process.

Read More